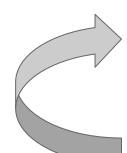

JuliaOpt

Optimization packages in Julia

Iain Dunning Operations Research Center, MIT

http://iaindunning.com


@iaindunning github.com/lainNZ

7th Annual Scientific Software Days Conference, Austin, Texas, Feb 25-26, 2016

Overview

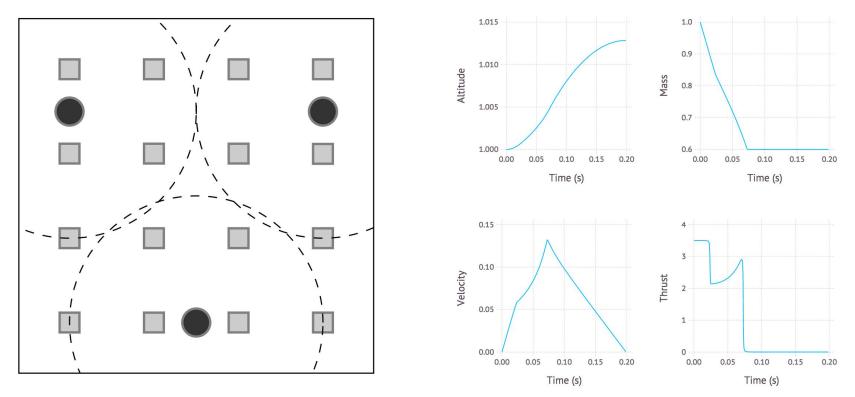
- 1. What is **Julia**?
- 2. What is **optimization**?
- 3. What is **JuliaOpt**?
- 4. Modeling with **JuMP**
- 5. Modeling with Convex.jl
- 6. Interfaces MathProgBase.jl
- 7. JuliaOpt as an organization

Iain Dunning Fifth (final!) year PhD

What is Julia?

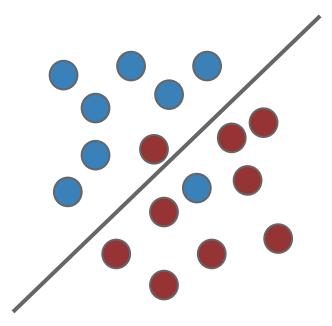
"high-level, high-performance dynamic programming language for technical computing, with syntax that is familiar to users of other technical computing environments"

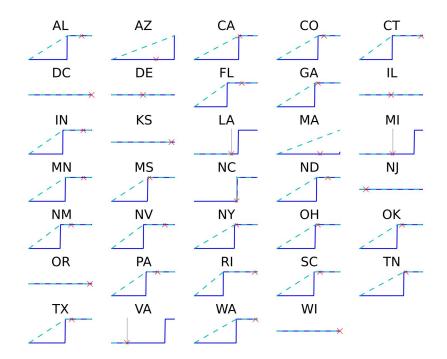
- LLVM JIT, types, multiple dispatch,
- Macros/metaprogramming (Lisp-ish)
- Built-in package manager, plays well with other languages, free/open source (MIT)


 $a_norm(x) = sqrt(sum(x.*x))$

```
function my_norm{T<:Number}(x::Vector{T})-</pre>
n = zero(T)
for i in eachindex(x)
n += x[i]^2
end
return sqrt(n)-
end
@show my_norm([-1,0,+1]) # 1.414..-
my_map(f, x) = [f(i) for i in x]
@show my_map(abs, -1:+1) # [1,0,1]-
```

What is Optimization?


$\min_{x} \quad f(x)$
subject to $\quad g_i(x) \leq 0 \quad \forall i$

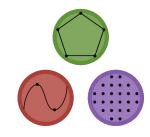

What is Optimization?

I. Dunning, J. Huchette, and M. Lubin. "JuMP: A modeling language for mathematical optimization."

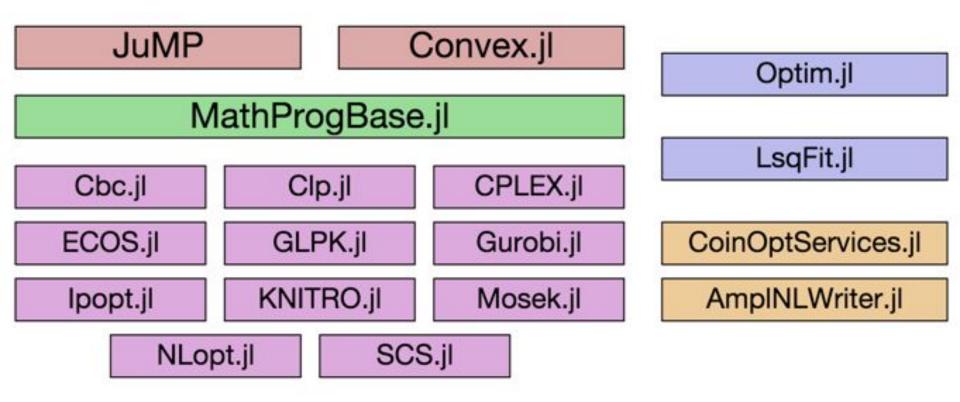
What is Optimization?

M. Udell, and S. Boyd, "Maximizing a Sum of Sigmoids"

What is JuliaOpt? Packages for...


• **Modeling**: express optimization problems

with Julia code


• **Solving**: pure Julia routines, and wrappers

for external solvers

• **Abstracting**: the "glue" between modeling, solving, and user code

JuliaOpt Packages

JuliaOpt as an Organization

• Standards for packages:

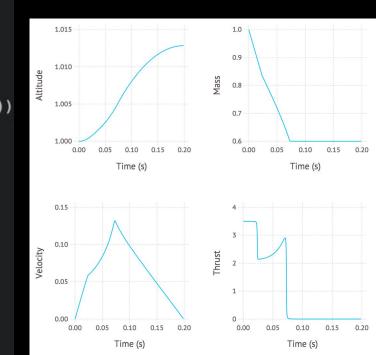
binaries, documentation, tests, integration

• Centralized info about optimization in Julia

juliaopt.org julia-opt mailing list
Including jupyter notebooks!

Modeling problems with JuMP

But need...


$$\begin{array}{c|c} \min_{x} & \sum_{(i,j)\in E} c_{i,j} x_{i,j} \\ \text{s.t.} & \sum_{(i,j)\in E} x_{i,j} = \sum_{(j,k)\in E} x_{j,k} \quad \forall j \in V \setminus \{1,n\} \\ & \sum_{(i,n)\in E} x_{i,n} = 1 \\ & 0 \leq x_{i,j} \leq C_{i,j} \quad \forall (i,j) \in E \end{array}$$

We have...

```
min \sum c_{i,j} x_{i,j}
                                                      (i,j) \in E
                                                s.t. \sum x_{i,j} = \sum x_{j,k} \quad \forall j \in V \setminus \{1, n\}
                                                      (i,j) \in E (j,k) \in E
                                             \sum x_{i,n} = 1 
                                                    (i,n) \in E
                                                    0 \le x_{i,j} \le C_{i,j} \quad \forall (i,j) \in E
   immutable Edge
       from; to; cost; capacity
   end
                                                                             Julia
  edges = [Edge(1,2,1,0.5), Edge(1,3,2,0.4), Edge(1,4,3,0.6),
             Edge(2,5,2,0.3), Edge(3,5,2,0.6), Edge(4,5,2,0.5)]
                                                                                  JuMP
  mcf = Model()
@defVar(mcf, 0 <= flow[e in edges] <= e.capacity)</pre>
@addConstraint(mcf, sum{flow[e], e in edges; e.to==5} == 1)
  @addConstraint(mcf, flowcon[n=2:4], sum{flow[e], e in edges; e.to==node}
                                         == sum{flow[e], e in edges; e.from==node})
@setObjective(mcf, Min, sum{e.cost * flow[e], e in edges})
```

```
using JuMP, Ipopt
mod = Model(solver=IpoptSolver(print_level=0))
@defVar(mod, ∆t ≥ 0, start = 1/n) # Time step
(defNLExpr(t_f, \Delta t*n))
                                     # Time of flight-
# State variables
(defVar(mod, v[0:n] \ge 0))
                                      # Velocity-
(defVar(mod, h[0:n] \ge h_0))
                                      # Height-
(defVar(mod, m_f \le m[0:n] \le m_0))
                                      # Mass
# Control: thrust-
(defVar(mod, 0 \leq T[0:n] \leq T_max))
# Objective: maximize altitude at end of time of flight-
@setObjective(mod, Max, h[n])
# Forces - drag and gravity-
@defNLExpr(mod, drag[j=0:n], D_c*(v[j]^2)*exp(-h_c*(h[j]-h_0)/h_0))
@defNLExpr(mod, grav[j=0:n], g_0*(h_0/h[j])^2)
# Dynamics
for j in 1:n
   # h' = v-
    (addNLConstraint(mod, h[j] == h[j-1] + \Delta t * v[j-1])
\# v' = (T-D(h,v))/m - q(h)
    (addNLConstraint(mod, v[j] == v[j-1] + \Delta t*(
                      (T[j-1] - drag[j-1])/m[j-1] - grav[j-1]))
.... # m' = -T/c^{-1}
    @addNLConstraint(mod, m[j] == m[j-1] - Δt*T[j-1]/c)
end
```

Reverse-then-forward mode automatic differentiation to codegen derivative-evaluating functions (sparse Hessian), as callbacks that can be used with IPOPT, KNITRO, ...

Modeling with Convex.jl

"Given polyhedron
$$C = \{x \mid a_i^T x \leq b_i, i = 1, ..., m\}$$

find **ellipsoid** $\mathcal{E} = \{Bu + d \mid ||u||_2 \le 1\}$ that lies in the

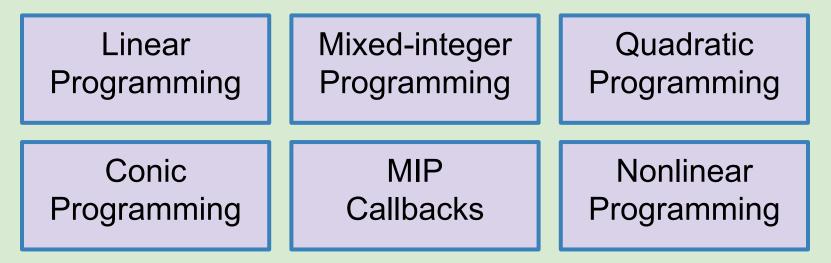
interior of C with maximum volume"

 $\begin{array}{ll} \text{maximize} & \log \det B \\ \text{subject to} & \sup_{\|u\|_2 \leq 1} I_C(Bu+d) \leq 0 \end{array}$

Convex.jl analyzes convexity, reduces to "conic"

Max Volume Inscribed Ellipsoid

maximize $\log \det B$ subject to $\|Ba_i\|_2 + a_i^T d \le b_i, \quad i = 1, \dots, m$


Is that objective function concave?

- \rightarrow **B** is **positive definite** matrix...
- \rightarrow det(B) = product of eigenvalues of B = +ve...
- \rightarrow log of positive *x* = concave!

using Convex $a = \{ [2, 1], [2, -1], [-1, 2], [-1, -2] \}$ B = Variable(2,2)d = Variable(2)p = maximize(logdet(B))for i in 1:4 p.constraints += norm(B*a[i]) + dot(a[i],d) <= 1</pre> end solve!(p) println(B.value) println(d.value)

MathProgBase.jl

- Standard interface for optimization in Julia
- Crucial to the success of JuliaOpt

MathProgBase.jl Design & Benefits

- "Don't create interface unless you have at least two use cases"
 - Callbacks: "many states, one callback" vs "many states, many callbacks"
 - SDP interface becomes conic interface
- Multiplier effect for shared interface
 - JuMP initial consumer, now also Convex.jl
 - Each added solver benefits all

JuliaOpt + MPB for new solvers

- e.g. "mixed-integer disciplined convex programming"
 - M. Lubin, E. Yamangil, R. Bent, J.P. Vielma,
 Extended Formulations in Mixed-integer Convex
 Programming
- User code \rightarrow Convex.jl \rightarrow MathProgBase.jl
 - \rightarrow New MIDCP solver \rightarrow MathProgBase.jl
 - \rightarrow Anv* MILP Solver

JuMPeR

JuMPeR - Robust Optimization https://gumpe.

com/lainNZ/JuMPeR.jl

JuMPChance - Chance Constraints https:

//github.com/mlubin/JuMPChance.jl

StochJuMP - Stochastic Optimization <u>https:</u>

//github.com/joehuchette/StochJuMP.jl

Education, Academia & Industry

- JuliaOpt used for teaching around the world
- And research! For example,
 - Vielma, et al. "Extended Formulations in Mixed Integer Conic QP"
 - o Gupta, Tobin, Pavel, "LP Makes Railway Networks Energy-efficient"
 - Gorhan, Mackey. "Measuring Sample Quality with Stein's Method"
 - Giordano, Broderick, Jordan. "Robust Inference with Variational Bayes"
 - Bertsimas, de Ruiter, "Duality in two-stage adaptive linear optimization: Faster computation and stronger bounds"
- Several **companies** using for "real work" too
- See http://juliaopt.org for latest info, email us!

Thanks to our contributors!

blakejohnson Blake Johnson

carlobaldassi Carlo Baldassi

cmcbride Cameron McBride

davidlizeng David Zeng

lainNZ lain Dunning

JackDunnNZ Jack Dunn

tkelman Tony Kelman

jennyhong Jenny Hong

jfsantos João Felipe Santos

joehuchette Joey Huchette

johnmyleswhite John Myles White

karanveerm Karanveer Mohan

lindahua Dahua Lin

ulfworsoe Ulf Worsøe

madeleineudell Madeleine Udell

mlubin Miles Lubin

pjabardo

pkofod Patrick Kofod Mogensen

stevengj Steven G. Johnson

timholy Tim Holy

yeesian Yeesian Ng