PETSc: Technical and social aspects of library

development
This talk: https://jedbrown.org/files/20160225-PETSc.pdf

Jed Brown jed@jedbrown.org (CU Boulder)
Satish Balay, Matt Knepley, Lois Curfman Mclnnes, Karl Rupp,
Barry Smith

Scientific Software Days, UT Austin, 2016-02-25

https://jedbrown.org/files/20160225-PETSc.pdf

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.
» but only if there is no JavaScript
» recompile to use JavaScript

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

Firetran!

Renders HTML 10% faster than Firefox or Chromium.
but only if there is no JavaScript
» recompile to use JavaScript

v

v

v

Character encoding compiled in

v

Mutually incompatible forks

Firetran!

v

Renders HTML 10% faster than Firefox or Chromium.
but only if there is no JavaScript
» recompile to use JavaScript

v

v

Character encoding compiled in

v

Mutually incompatible forks

v

No confusing run-time proxy dialogs, edit file and recompile

v

Proxy configuration compiled in

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

» Mutually incompatible forks

» No confusing run-time proxy dialogs, edit file and recompile
» Proxy configuration compiled in

» For security, HTTP and HTTPS mutually incompatible

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

» Mutually incompatible forks

» No confusing run-time proxy dialogs, edit file and recompile
» Proxy configuration compiled in

» For security, HTTP and HTTPS mutually incompatible

» Address in configuration file, run executable to render page

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

» Mutually incompatible forks

» No confusing run-time proxy dialogs, edit file and recompile
» Proxy configuration compiled in

» For security, HTTP and HTTPS mutually incompatible

» Address in configuration file, run executable to render page
» Tcl script manages configuration file

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

» Mutually incompatible forks

» No confusing run-time proxy dialogs, edit file and recompile
» Proxy configuration compiled in

» For security, HTTP and HTTPS mutually incompatible

» Address in configuration file, run executable to render page
» Tcl script manages configuration file

» Plan to extend script to recompile Firetran with optimal features
for each page.

Firetran struggles with market share

» Status quo in many scientific software packages
» Why do we tolerate it?

» |s scientific software somehow different?

Flow Control for a PETSc Application

Main Routine

Timestepping Solvers (TS)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Preconditioners (PC)

Application Function Jacobian
Initialization Evaluation Evaluation

Postprocessing

Review of library best practices

» Namespace everything

» headers, libraries, symbols (all of them)
» use static and visibiliy to limit exports

> Avoid global variables
» Avoid environment assumptions; don’t claim shared resources
» stdout, MPI_COMM_WORLD

» Document interface stability guarantees, upgrade path
» Binary interface stability

» User debuggability

» Documentation and examples

» Portable, automated test suite

» Flexible error handling

» Support

Compile-time configuration

configuration in build system

» over-emphasis on “efficiency”

> templates are compile-time

v

» combinatorial number of variants
compromises on-line analysis capability
create artificial 10 bottlenecks
offloads complexity to scripts and “workflow” tools
limits automation and testing of calibration
maintaining consistency complicates provenance
PETSc Fail: mixing real/complex, 32/64-bit int

Choose dependencies wisely, but practically

» Licenses

» PETSc has a permissive license (BSD-2); anything more
restrictive must be optional
» ParMETIS license prohibits modification and redistribution
» But bugs don't get fixed, even with patches and reproducible tests
» Result: several packages now carry patched versions of
ParMETIS — license violation and namespace collision
Parallel ILU from Hypre
Users Manual says PILUT is deprecated — use EUCLID
EUCLID has memory errors, evidently not supported
Repository is closed; PETSc doesn’t have resources to maintain
Tough luck for users

v

>
>
»
>

v

Encapsulation is important to control complexity

v

Reconfiguring indirect dependencies breaks encapsulation
Single library may be used by multiple components in executable

» diamond dependency graph
» conflict unless same version/configuration can be used for both

v

Packaging and distribution

» Developers underestimate challenge of installing software

» User experience damaged even when user’s fault (broken
environment)

» Package managers (Debian APT, RedHat RPM, MacPorts,
Homebrew, etc.)

» Binary interface stability critical to packagers
» PETSc has made changes to install schema to help packagers

Support: petsc-users mailing list

60 T T T —fll— Algorithms

50 b \ . . | —@— Beginner
| = Bug Report
40 \ AN —y—— Features
N

— ~N—~v ——— Performance

—@— Runtime Errors

30

Relative Share (%)

0
2006 2007 2008 2009 2010 2011 2012 2013 2014
Year

» 964 emails in 2006 — 3947 emails in 2014

» Also have petsc-dev and petsc-maint
» Hard to tell at first contact if user is worth helping

> Lots of work
» Success stories are very satisfying

» 12 contributors in 2006—2007, 46 contributors in 2015

User modifications versus plugins

» Fragmentation is expensive and should be avoided
» Maintaining local modifications causes divergence
» Better to contain changes to a plugin

» dlopen() and register implementations in the shared library
» Invert dependencies and avoid loops

» 1ibB depends on 1ibA
» want optional implementation of 1ibA that uses 1ibB
> libA-plugin depends on both 1ibA and 1ibB

» Static libraries are anti-productive (tell your computing center)

» Can sort-of do plugins with link line shenanigans
» Still no reliable and ubiquitous way to handle transitive
dependencies

Controlling the Binary interface

» Recompiling code is wasted productivity

» Implementation concerns (private variables, new virtual methods)
should not require recompiling user code

» PETSc uses opaque pointers and the “delegator” (aka. “pointer to
implementation”) pattern.

» Static function overhead insignificant, incremental cost less than
2 cycles

» Better for debugging
» Easier to expose libraries to dynamic programming languages

Upstreaming and community building

» Maintainers should provide good alternatives to forking

» Welcoming environment for contributions

» Empower users — all major design decisions discussed in public
» cf. Harvey Birdman Rule of copyleft-next

» Privacy, “scooping”, openness
» My opinion: social problem, deal with using social means

» Major tech companies have grossly underestimated cost of

forking
> In science, we cannot pay off technical debt incurred by forking
» Provide extension points to reduce cost of new development

Workflow ideals

> 'master’ is always stable and ready to release
» features are complete and tested before appearing in ‘'master’

» commits are minimal logically coherent, reviewable, and testable
units

» related commits go together so as to be reviewable and
debuggable by specialist

» new development is not disrupted by others’ features and bugs
» rapid collaboration between developers possible

> git log --first-parent maint..master reads like a
changelog

» bugs can be fixed once and anyone that needs the fix can obtain
it without side-effects

Simplified gitworkflows(7)

) maintenance
‘maint’ contains latest release

feature release
latest feature

upcoming feature release

will be tagged on ‘master

‘master’ contains
‘maint merged with v3.0
evidence of stability

aint’
O ‘master is a stable base for
bug fix new features, always ready
for release typical feature branch to release

“graduation”

feature did not ()

review
graduate for v2.0 | fix issue found by next
! risky feature pullreq external client |
1 ~ after each release, the old 'next
' 4 is discarded and recreated
\
\ testing & users
R S PR S
reviewed, thought bug fixes tested ‘next contains testing and “eager’ users,
to be complete like features test periods overlap ‘master’ bugs here only affect
integration, not development
time

———» first-parent history of branch

——————— merge history (not first-parent)

> merges to be discarded when ‘next’ is rewound at next release
merge in first-parent history of ‘master’ or ‘maint’ (approximate “changelog”)
merge to branch ‘next’ (discarded after next major release)
commit in feature branch (feature branches usually start from ‘master’)

[oNoNoN]

commit in bug-fix branch (bug-fix branches usually start from ‘maint’ or earlier)

Best practices

» Every branch has a purpose
» Distinguish integration branches from topic branches
» Do all development in topic branches
» git checkout -b my/feature-branch master
» Namespace your branches if working on a shared repository
» Merge integration branches “forward”
» maint-1 — maint — master — next
» git checkout -b my/bugfix-branch maint-1
» Write clear commit messages for reviewers and people trying to
debug your code
» Avoid excessive merging from upstream
» Always write a clear commit message explaining what is being
merged and why
> Always merge topic branches as non-fast-forward (merge
--no-£ff)
» Gracefully retry if you lose a race to shared integration branch
» This maximizes utility of --first-parent history

https://bitbucket.org/petsc/petsc/wiki/developer-instructions-git#markdown-header-merging
https://bitbucket.org/petsc/petsc/wiki/developer-instructions-git#markdown-header-racy-integration

Messaging from threaded code

» Off-node messages need to be packed and unpacked

» Many MPIl+threads apps pack in serial — bottleneck
» Extra software synchronization required to pack in parallel

» Formally O(log T) critical path, T threads/NIC context
» Typical OpenMP uses barrier — oversynchronizes

» MPI_THREAD_MULTIPLE — atomics and O(T) critical path

» Choose serial or parallel packing based on T and message
sizes?

» Hardware NIC context/core now, maybe not in future

» What is lowest overhead approach to message coalescing?

HPGMG-FV: flat MPI vs MPI+OpenMP (Aug 2014)
0.40 ——{HPGMG-FV Solve Time|

=@ Mira

0.35 =&—Edison
= ~@-Hopper
T
£ 030 —= ~A-Stampede(SNB)
o
f‘"i ././r ~@-Peregrine
o 0.25
£ oK
=
v 0.20 A N"’ig—---- =O=Edison(Flat MPI)
3 | @ o®
; o O-K (Flat MPI)
3 0.15 T o 8' O =&~ Carver
s o 9] M 8 |o©
9 0.10 2 o
=

0.05

0.00

1 10 100 1,000 10,000 100,000

NUMA Nodes (2M DOF/NUMA Node)

p /A QRam Williame

Exascale Science & Engineering Demands

» Model fidelity: resolution, multi-scale, coupling

» Transient simulation is not weak scaling: At ~ Ax
Analysis using a sequence of forward simulations

> Inversion, data assimilation, optimization

» Quantify uncertainty, risk-aware decisions
Increasing relevance =— external requirements on time

» Policy: 5 SYPD to inform IPCC

» Weather, manufacturing, field studies, disaster response
“weak scaling” [...] will increasingly give way to “strong scaling”
[The International Exascale Software Project Roadmap, 2011]
ACME @ 25 km scaling saturates at < 10% of Titan (CPU) or
Mira

» Cannot decrease Ax: SYPD would be too slow to calibrate

» ‘“results” would be meaningless for 50-100y predictions, a “stunt

run”

ACME v1 goal of 5 SYPD is pure strong scaling.

> Likely faster on Edison (2013) than any DOE machine —2020
» Many non-climate applications in same position.

v

v

v

v

v

Tim Palmer’s call for 1km (Nature, 2014)

Running a climate simulator with 1-kilo-

metre cells over a timescale of a century will

require ‘exascale’ computers capable of han-

dling more than 10" calculations per second.

Such computers should become available

within the present decade, but may not

become affordable for individual institutes

for another decade or more.

» Would require 10* more total work than ACME target resolution
» 5 SYPD at 1km is like 75 SYPD at 15km, assuming infinite
resource and perfect weak scaling
» ACME currently at 3 SYPD with lots of work
» Two choices:
1. compromise simulation speed—this would come at a high price,
impacting calibration, data assimilation, and analysis; or
2. ground-up redesign of algorithms and hardware to cut latency by a
factor of 20 from that of present hardware
» DE Shaw’s Anton is an example of Option 2
» Models need to be constantly developed and calibrated
» custom hardware stifles algorithm/model innovation

» Exascale roadmaps don’t make a dent in 20x latency problem

Outlook

» Scientific software shouldn’t be “special”

> Usability is important

» Support requires debugging via email

» Defer all decisions to run time

» Plugins are wonderful for users and contributors

» Reviewing patches/educating contributors is a thankless task, but
crucial

» Application scaling mode must be scientifically relevant

» Versatility is needed for model coupling and advanced analysis
» Abstractions must be durable to changing scientific needs

» Plan for the known unknowns and the unknown unknowns

» The real world is messy!

