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Stampede 

What do we do with 6400 MIC cards 

Why is the MIC technology so exciting? 

How do we know? 

How to program and optimize for MIC? 

 
 

 



TACC — Texas Advanced Computing Center 
•  World-wide reputation for computational excellence 
•  Large clusters for compute and visualization 

Ø  Ranger w/ 579 TFlops — Lonestar w/  302 Tflops 
Ø  Longhorn: 512 GPUs 

•  Large research projects 

Intel® MIC Architecture 
•  Fascinating technology — Inviting programming models 
•  Tremendous potential for Scientific Computing 
•  Opens a road to Exascale computing with Intel® Xeon® 

TACC + Intel + Dell + Academic Partners 
Stampede Cluster in Q1 2013 

•  ~10 PFlops, 80% from MIC 



Programming and Optimizing for MIC? 
 

How hard can it be? 



MIC Architecture 
•  Many cores on the die 
•  L1 and L2 cache 
•  Bidirectional ring network 
•  Memory and PCIe connection 

Knights Ferry SDP 
•  Up to 32 cores 
•  1-2 GB of GDDR5 RAM 
•  512-bit wide SIMD registers 
•  L1/L2 caches 
•  Multiple threads (up to 4) per core 
•  Slow operation in double precision 
 

Knights Corner in Stampede 
•  61 cores 
•  8 GB of GDDR5 memory 

MIC (KNF) architecture block diagram 



What we at TACC like about MIC 
(and we think that you will like this, too) 

•  Intel’s® MIC is based on x86 technology 
–  x86 cores w/ caches and cache coherency 
–  SIMD instruction set 

•  Programming for MIC is similar to programming for CPUs 
–  Familiar languages: C/C++ and Fortran  
–  Familiar parallel programming models: OpenMP & MPI 
–  MPI on host and on the coprocessor 
–  Any code can run on MIC, not just kernels 

•  Optimizing for MIC is similar to optimizing for CPUs 
–  Make use of existing knowledge! Key elements of this talk 

highlighted! 



Coprocessor vs. Accelerator 
•  Differences 

–  Architecture:                                      x86 vs. streaming processors 
                                          coherent caches vs. shared memory

            and caches 
–  HPC Programming model:  
                        extension to C++/C/Fortran vs. CUDA/OpenCL              

                          OpenCL support  
Threading/MPI: 
                       OpenMP and Multithreading vs. threads in hardware 
                              MPI on host and/or MIC vs. MPI on host only 
–  Programming details 

           offloaded regions vs. kernels 
–  Support for any code: serial, scripting, etc.    

                                             Yes      No 

•  Native mode: Any code may be “offloaded” as a whole to  
       the coprocessor                 



Adapting Scientific Code to MIC 
•  Today: Most scientific code for clusters 

–  Languages: C/C++ and/or Fortran, 
–  Communication: MPI 
–  may be thread-based (Hybrid code: MPI & OpenMP), 
–  may use external libraries (MKL, FFTW, etc.). 

•  With MIC on Stampede: 
–  Languages: C/C++ and/or Fortran, 
–  Communication: MPI 
–  may run an MPI task on the MIC 
    or may offload sections of the code to the MIC, 
–  will be thread-based (Hybrid code: MPI & OpenMP), 
–  may use external libraries (MKL),     

 that automatically use MIC 



Programming Models 

          Ready to use on day one! 
 

•  TBB’s will be available to C++ programmers 

•  MKL will be available 
–  Automatic offloading by compiler for some MKL features 

•  Cilk Plus 
–  Useful for task-parallel programing (add-on to OpenMP) 
–  May become available for Fortran users as well 

•  OpenMP 
–  TACC expects that OpenMP will be the most interesting 

programming model for our HPC users 

 



Execution Models 

Symmetric vs. “Offloaded” 
 

Questions:  
 Where to place the MPI tasks? 
 Which MPI task spawns the threads on the MIC? 

Answers: 
 Two execution models come to mind: 

 



MPI Task Placement and Communication 

 

 

Symmetric setup: Easier 
 

•  MPI tasks on host and coprocessor 
Ø  Equal (symmetric) members of the MPI communicator 
•  Same code on host processor and MIC processor  
•  Communication between any MPI tasks through 

regular MPI calls 

“Offloaded” setup: More involved 
 

•  MPI tasks on host only 
•  “Offload” directives added to OpenMP directives 
•  Communication between host and MIC through 

“offload” semantics 



Symmetric Execution Model 

 

 

•  MPI tasks on host and coprocessor 

Ø  Equal (symmetric) members of the MPI communicator 

•  Same code on host processor and MIC processor  

•  Communication between any MPI tasks through 
regular MPI calls 
Ø  Host ⬌ Host 
Ø  Host ⬌ MIC 
Ø  MIC  ⬌ MIC 



“Offloaded” Execution Model 
•  MPI task execute on the host 

•  Directives “offload” OpenMP code sections to the MIC 

•  Communication between MPI tasks on hosts through MPI 

•  Communication between host and coprocessor through 
“offload” semantics 

•  Code modifications: 
–  “Offload” directives inserted before OpenMP parallel regions 

 

 One executable (a.out) runs on 
host and coprocessor 



Two Models: When to use Which? (1) 
•  Premise: Any code 

–  contains parallel and serial sections 
–  scales well if the serial sections are small / short 

•  Xeon vs. MIC Coprocessor 
–  Xeon optimized for “any/irregular” workload 
Ø Executes serial sections faster 
–  MIC, many cores optimized for “regular” workload 
Ø Executes parallel sections much faster 

•  Conclusion 
–  Minimizing the time spent in serial sections is even more 

critical on MIC than on regular hosts 



Two Models: When to use Which? (2) 

•  Serial code sections are very small 
•  Serial sections can be executed on MIC without 

substantial impact on overall performance 
➞ Use symmetric execution model 

 
•  Algorithm / implementation contains unavoidable large 

serial code sections 
•  Serial sections execution much better on a single 

Xeon core than on a single MIC core 
➞ Use “offloaded” execution model 
 

Case 1: 

Case 2: 



MIC Programming with Offloading 
and OpenMP 

•  MIC specific pragma precedes OpenMP pragma 
–  Fortran:  !dir$ omp offload target(mic) <…> 
–  C:  #pragma   offload target(mic) <…> 

•  Without optional keywords, all data transfer is 
handled by the compiler 

•  Example 1: Automatic data management 
•  Example 2: Manual data management 
•  Example 3: I/O from within offloaded region 

–  Data can “stream” through the MIC; no need to leave the 
coprocessor to fetch new data 

–  Also very helpful when debugging (print statements) 

•  Example 4: Offloading a subroutine and using MKL 



Example 1 
•  2-D array (a) is filled with data on the coprocessor 
•  Data management handled automatically by the compiler 

–  Memory for (a) allocated on coprocessor 
–  Private variables (i, j, x) are created 
–  Result is copied back 

program ex1   ! Fortran example 
!$ use omp_lib                         ! OpenMP 
integer            :: n = 1024         ! Size 
real, dimension(:,:), allocatable :: a ! Array 
integer            :: i, j             ! Index 
real               :: x                ! Scalar 
  
allocate(a(n,n))                   ! Allocation 
  
!dir$ omp offload target(mic)      ! Offloading 
!$omp parallel do shared(a,n), &   ! Par. region 
  private(x, i, j), schedule(dynamic) 
do j=1, n 
  do i=j, n 
    x = real(i + j); a(i,j) = x 
  enddo 
enddo 
end program ex1  

#include <omp.h>      /* C example */ 
#include <stdlib.h> 
#include <stdio.h> 
int main() { 
  const int n = 1024; /* Size of the array */ 
  float   a[n][n];    /* Array             */ 
  int     i, j;       /* Index variables   */ 
  float   x;          /* Scalar            */ 
 
#pragma offload target(mic)  
#pragma omp parallel for shared(a), \ 
        private(x), schedule(dynamic) 
  for(i=0;i<n;i++) { 
    for(j=i;j<n;j++) { 
      x = (float)(i + j); a[i][j] = x; 
    } 
  } 
} 



Example 2 
•  Stencil update and Reduction with persistent data 
•  Data management by programmer 

–  Copy in without deallocation:                       in(a: free_if(0)) 
–  First and second use without any data movement:      nocopy(a) 
–  Finally, copy out without allocation:        out(a: alloc_if(0)) 

!!! Array a is a 2d array with (0:n+1,0:n+1) 
elements  
  
! Data transfer with allocation, no deallocation 
!dir$ omp offload target(mic) in(a: free_if(0)) 
!$omp parallel 
!$omp end parallel 
  
! Offloading: no allocation and data transfer 
!dir$ omp offload target(mic) nocopy(a) 
!$omp parallel do shared(a) 
do j=1, n 
  do i=1, n 
    a(i,j) = 0.25 * (a(i+1,j) + a(i-1,j) + & 
                     a(i,j-1) + a(i,j+1)) 
  enddo 
enddo 
  
sum = 0. ! host code between offloaded regions 

! Offloading: no allocation and data transfer 
!dec$ omp offload target(mic) nocopy(a) 
!$omp parallel do shared(a) reduction(+:sum) 
do j=1, n 
  do i=1, n 
    sum = sum + a(i,j) 
  enddo 
enddo 
  
! Data transfer with deallocation, no allocation 
!dir$ omp offload target(mic) out(a: alloc_if(0)) 
!$omp parallel 
!$omp end parallel 



Example 3 
•  I/O from within offloaded region 
•  File opened/closed by one thread (omp single) 
•  Threads read from file (omp critical) 
•  Threads may read in parallel (not shown) 

–  Parallel file system 
–  Threads read different            

parts of file, stored on                        
different targets 

#pragma offload target(mic) /* Offloaded region */ 
#pragma omp parallel 
{ 
#pragma omp single /* Open File */ 
{ 
  printf("Opening file in offloaded region\n"); 
  f1 = fopen("/var/tmp/mydata/list.dat","r"); 
} 
  
#pragma omp for 
for(i=1;i<n;i++) { 
#pragma omp critical 
  { 
    fscanf(f1,"%f",&a[i]); 
  } 
  a[i] = sqrt(a[i]); 
} 
  
#pragma omp single 
{ 
  printf("Closing file in offloaded region\n"); 
  fclose (f1);}} 



Example 4 
•  Two routines sgemm (MKL) and my_sgemm 
•  Both called with offload directive 

–  Explicit data movement used for my_sgemm 
–  Input:    in(a, b) 
–  Output: out(d) 

•  Hand-written code (my_sgemm) carries special attribute to 
have routine compiled for the coprocessor 

! Snippet from the Hand-coded subprogram 
!dir$ attributes offload:mic :: my_sgemm 
subroutine my_sgemm(d,a,b) 
real, dimension(:,:) :: a, b, d 
!$omp parallel do 
do j=1, n 
  do i=1, n 
    d(i,j) = 0. 
    do k=1, n 
      d(i,j) = d(i,j) + a(i,k) * b(k,j) 
    enddo 
  enddo 
enddo 
end subroutine 

! Snippet from the Main Program 
!dir$ attributes offload:mic :: sgemm 
  
!dir$ offload target(mic) ! Offload to MIC 
call sgemm('N','N',n,n,n,alpha,a,n,b,n,beta,c,n) 
  
! Offload to the accelerator with explicit 
!   clauses for the data movement 
!dir$ offload target(mic) in(a,b) out(d) 
call my_sgemm(d,a,b) 



Thank You! 
 
 
 

Questions? 


